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SYNOPSIS 

A thermodynamic model for the equilibrial process zone ahead of a crack in polycarbonate 
is developed from the recently proposed Chudnovsky model and experimental character- 
ization of the process zone. Based on the model, the force for evolution of the process zone 
is proposed from the consideration of irreversible thermodynamics and chemical reaction 
theories. The experimental data reported in our previous paper are well described by the 
equilibrial process zone model and a new kinetic equation. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

In a previous paper, we reported the evolution of 
the process zone ahead of a crack under stress-re- 
laxation at a constant crack length in a polycarbon- 
ate.' The evolution of the process zone was evaluated 
in terms of the relative deviation of the current pro- 
cess zone size from its equilibrial value. However, 
this parameter did not allow us to generate a master 
curve for the various experimental conditions. The 
goal of this paper is to construct a constitutive equa- 
tion for process zone growth employing thermody- 
namic considerations. 

A thermodynamic model for an equilibrial process 
zone in polymers was recently proposed by Chud- 
novsky2 and its validity was supported by the ex- 
perimental studies on various  polyethylene^.^,^ The 
essence of the Chudnovsky model (CM) is that the 
process zone can be considered as a homogenous 
second phase, i.e., transformed material, and thus 
the shape and the size of the process zone are derived 
from the phase equilibrium conditions. 

The experimental examination of the CM has 
been performed on polyethylene for which the as- 
sumption of the homogeneity of the transformed 
(drawn) material within the process zone is quite 
adequate. However, the observation of the process 

zone in polycarbonate (PC)  shows an important dif- 
ference: It consists of shear bands whose density 
varies noticeably within the zone. Similarly, in ex- 
amination of the neck formation under uniaxial 
tension of PC, one observes a spectrum of inter- 
mediate stages between the initial and fully drawn 
(transformed) material. In the present paper, we 
improve the CM to account for the variable extent 
of transformation of material within the process 
zone. Further, we employ the improved model to 
determine the process zone driving force and then 
formulate an appropriate kinetic equation following 
the framework of irreversible thermodynamics. An 
analysis of the parameters of the model as well as a 
comparison with experimental data are also pre- 
sented. 

2. REVIEW OF THE CM MODEL 

Let G be the Gibbs potential of the system described 
in Figure 1, and V,,, the domain occupied by the 
process zone. Then, for the isothermal condition, 
the equilibrial domain V,, of the process zone cor- 
responds to the minimum of G ,  i.e.: 
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Here, G is a functional of the domain V,, and a func- 
tion of crack length 1 and applied remote stress am. 
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Following Ref. 2, we employ the Eshelby method 
to  evaluate a variation of the Gibbs potential due to 
a virtual migration of the process zone boundary: 

For evaluation of the Gibbs potential, G, of a crack 
with the surrounding process zone consisting of the 
second phase [see Fig. 2 ( a )  3 ,  the two-phase system 
was decomposed into its elements as shown in Figure 
2 ( b )  . The first element results from removal of the 
process zone and substituting its action with an  
equivalent traction udr along the interface ((Tdr is the 
drawing stress). The second element is the process 
zone V,, within which the original material submit- 
ted to  Udr undergoes the transformation (drawing). 
The width, wo, of the layer of the original material 
in Figure 1 that underwent transformation varies 
along the process zone length x1 and is initially un- 
known. The resulting width, w *( x1 ) , of the process 
zone is w*( xl) = X(xl) wo(x l ) ,  with X being the draw 
ratio and assumed constant within the process zone. 
The displacement caused by the transformation at  
the interface shown in element 2 of Figure 2 ( b )  is 

For coherency of the interface, it is required that 
w*(x1)  - wo(x1). 

Then, the width wo(xl )  of the initial strip that is 
transformed into the process zone is directly related 
to  the crack-opening displacement of element 1 in 
Figure 2 ( b ) :  

Thus, the volume V,, of the initial material can be 
expressed as  

where zo is the initial thickness of the specimen. 
The process-zone shape is thus uniquely determined 
by the process zone length, I,, because the crack- 
opening displacement depends on I ,  ua, Udr, and 1,. 
The condition for the minimum Gibbs potential for 
two-phase system equilibrium can be written as 

the Opening of a slit in element 1 be equal to the Equation (6a)  leads to the following equation2: 
displacement of the boundary of element 2. For a 

1 can be approximated as the crack-opening dis- 
placement, A, thus leading to t.he following com- 
patibility equation: 

slender process zone, the displacement of element Ktot(Ktot + T K ( U & ) )  = 0 (6c) 

and the inequality eq. (6b)  ensures the uniqueness 
of the solution, i.e.: 
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Figure 1 Schematic diagram of a crack and process zone in PC. 
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Figure 2 A model for the computation of the Gibbs potential: Element one is obtained 
from removal of the process zone and substituting its action with an equivalent traction 
udr along the interface, and element two is obtained from the process zone V,, within which 
the original material submitted to udr undergoes the transformation. 

Here, Ktot is the stress intensity factor (SIF) for 
element 1 of Figure 2 ( b ) ,  and K(odr), the SIF for 
the same element with the absence of u K .  7 repre- 
sents 2y*/ ( ( A  - 1 ) o d r ) ,  where y* is the specific 
transformation energy. This solution leads to the 
equilibria1 process-zone size and shape, which agree 
well with experimental observations on polyethylene 
and thin film PC.293*'" 

3. IMPROVEMENT OF THE MODEL 

As mentioned previously, PC was observed to un- 
dergo nonhomogeneous transformation within the 
process zone. Figure 3 shows the optical micrograph 
in polarized light and the schematic diagram of the 

two intersecting families of shear bands in cross 
section A-A'. We consider the individual shear band 
as transformed material. Between the shear bands, 
the material appears to be untransformed. During 
the evolution of the process zone, drawing progresses 
by ( a )  an increase of the number of shear bands and 
( b )  an increase of the width of the individual shear 
bands at  the expense of the neighboring untrans- 
formed material.5 The various stages of the drawn 
state correspond to different densities of the shear 
bands. 

To characterize an intermediate transformation, 
we introduce an extent of transformation <. < = 0 
corresponds to the original state and { = 1 is asso- 
ciated with the fully transformed state. The thinning 
of the cross section is a cumulative effect of the shear 
banding, as illustrated in Figure 3. The thinning and 
the draw ratio, A, are uniquely related since the den- 
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Cross Section A-A’ 
Figure 3 Micrograph and schematic diagram of intersecting families of shear bands in 
a cross section of the process zone. 

sity of transformed material is practically unchanged 
( a  few percent) .3 The extent of transformation is 
simply related to  the draw ratio A: 

A - 1  A*  
c =  (x)(xI-I) 

where A* is the draw ratio for fully transformed ma- 
terial and A is a variable draw ratio reflecting a cur- 
rent extent of transformation. A correspondence 
between the extent of shear banding and A has been 
discussed in our previous paper.’ I t  has also been 
found that  the extent of transformation varies 
within the analyzed process zone. Moreover, the 
distributions of c differ for a process zone formed 
under different conditions. 

Let us consider an  average draw ratio A ( x1 ) for 
+he cross section at  xl: 

Here, zo represents the thickness of original material, 
and z ,  that  in the process zone. Then, the average 
extent of transformation f in the cross section with 
coordinate “xl” (see Fig. 1 ) is given as 

The thinning profiles presented in Figure 11 of Ref. 
1 were used to  give the average extent of transfor- 
mation, <( xl), and the average draw ratio, A ( xl), 
along the process zone. Shown in Figure 4 are the 
values of Ceq ( xl) as a function of x1 normalized by 
the equilibria1 process zone size, la(eqf, for the various 
fixed displacements. Notice in Figure 4 the similarity 
of the shape of c[ xl/Zo(eql] and the monotonic in- 
crease of the amplitude of ce4( xl) with the displace- 
ment. This suggests that the evolution of the extent 
of transformation follows a self-similar pattern, 
which can be formally expressed as follows: 
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Profiles of average extent of transformation as function of for various 

Here, t is time. To evaluate the Gibbs potential, we 
first need to introduce an effective specific energy, 
y, which is related to { as follows: 

y*, in thermodynamic terms, is the difference in 
chemical potential (per unit volume) across the 

A 

E 
E 
Y 

h 

U 
Q) 

0 
v 

Y 

3 
o :experimental data 

3 -  
o :experimental data 

Y' = 7-05 x lo6 J/m3 
. 

- I' = 1.6 

1 -  

. 
Y' = 7-05 x lo6 J/m3 

- I' = 1.6 

1 -  

0 1  = I - I .  I .  I .  I 
0.9 1 .o 1 .I 1.2 1.3 1 .4  

Displacement 6 ( mm ) 
Figure 5 Equilibria1 process zone size as a function of 
applied displacements. The solid line represents the theo- 
retical solution. 

boundary of untransformed and fully transformed 
material. Then, the dimensionless factor 4 also be- 
comes a function of x1 and time: 

At equilibrium, the Gibbs potential depends explic- 
itly on la(eq),  similar to that in the CM, as well as 
implicitly through the extent of transformation. As 
a result, eq. 6 ( a ) ,  which is the necessary condition 
of the minimum Gibbs potential, is rewritten as 

Equation (1%) determines the size of the equilibria1 
process zone. Figure 5 shows the solution of eq. ( 12c) 
(solid line) with y* = 7.05 X lo6  J/m3 for the various 
fixed displacement conditions. The experimental 
data points are shown by the open circles. Only one 
parameter is employed in the above treatment for 
the four experimental conditions reported. 

The justification of this value comes from inde- 
pendent tests using the neck formation in simple 
tension combined with calorimetric determination 
of the residual strain energy stored in the trans- 
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formed (necked) material and estimation of heat 
generation during the transformation. 

4. DRIVING FORCE FOR EVOLUTION OF 
THE PROCESS ZONE 

The force on an interface between the original ma- 
terial and the process zone can be defined following 
Eshelby.' In our case, the evolution of the interface 
is uniquely determined by the process-zone length, 
la ,  as a function of time. The driving force X,, is 
determined as 

Repeating the arguments prior to eq. (12c) on the 
dependency of G on l,, the process-zone driving force 
can be presented as 

The details of the calculation of eq. (14) will be re- 
ported separately. If the transformation of material 
within the process zone is homogeneous, the CM is 
recovered. It corresponds to the first term in the rhs 
of the eq. 14. Figure 6 shows the dependency of the 
process-zone driving force as a function of l a / l u  ( eq)  

for the four experimental displacement conditions. 
At equilibrium, the process-zone driving force is zero. 

5. THE KINETIC EQUATION OF PROCESS 
ZONE EVOLUTION 

In irreversible thermodynamics for systems close to 
equilibrium, the rate of change toward the equilib- 
rium is assumed to be proportional to the corre- 
sponding driving force, X. In our case, the rate of 
approaching equilibrium is defined by the rate of 
changes in l,, i.e., la. Thus, a kinetic equation can 
be written as 

A different approach has been widely considered in 
studies of failure kinetics. For example, Zhurkov in 
his studies of the kinetics of fracture of solids under 
creep conditions found that a wide range of materials 
followed a stress-biased Ree-Eyring failure kinetic 
equation 7: 

0.5 0.6 0.7 0.8 0.9 1.0 

lalla (e q ) 

Figure 6 
In(eq) for various applied displacements. 

Process zone driving force as function of la/ 

t f =  Aoexp - 

where tf is the time to failure; T ,  the absolute tem- 
perature; R ,  the gas constant; Ao,  the characteristic 
time; and 4, a factor accounting for the effectiveness 
of reducing the activation energy, U ,  by the applied 
stress, u. Equation (16) was applied to uniaxial 
specimens of small diameter for which the fracture 
propagation time was negligible compared to the 
crack initiation time. 

An energy release rate-biased Ree-Eyring equa- 
tion was proposed with the argument that the crack 
rate i is inversely proportional to the fracture time 
on the molecular level and the stress at the crack 
tip is proportional to the energy release rate GI by 
a relationship such as u = G,/A,  where A is the 
crack-opening displacement: 

where i is  crack velocity and Al and a are constants. 
Equation (17) was adapted in studies of crack 
growth in PMMA.' A similar kinetic equation for 
alcohol-assisted craze growth in PC was p rop~sed .~  
The shortcoming of these types of exponential 
equations is the absence of an equilibria1 state. 

The driving force, X,,, can be decomposed into 
two parts, namely, a resistive and a driving part: 

where V,, is the transformed volume of the process 
zone and II is the potential energy of the system. 
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The resistive part has an analogy with the activation 
energy, U ,  and the driving part with the energy re- 
lease rate, G I ,  in eq. ( 17). 

The Arrhenius equation was first developed to 
account for the temperature dependency of the re- 
action rate constant, k ,  in chemical kinetics. Equa- 
tion (15) resembles that of a first-order chemical 
reaction, and, therefore, adapting the Arrhenius as- 
sumption of k with incorporation of an activation 
energy reduced by the process zone driving force, 
we propose the following equation for the kinetic 
coefficient in eq. (15): 

where a is a constant with units m2/mol. Finally, 
combining eq. (19) with (15),  we arrive at a new 
kinetic equation as follows: 

(20)  RT 

Note that eq. (20)  accounts for an equilibria1 state 
(la = 0 when X,, = 0)  and becomes increasingly 
nonlinear with increasing X,, , i.e., with increasing 
departure from the equilibrium. 

Since the experiments reported in Ref. 1 were 
performed at one temperature, eq. (20)  is simplified 
and the data cast as In( I,) vs. X,,, shown in Figure 
7. The solid line indicates the fit of eq. (20)  with a 
constant a as 16.39 X l o3  (m2/kmol). The unit of 
ko is m 4 /  (J s )  . The strongly nonlinear kinetics data 
are now collapsed into a master curve. 

6. CONCLUSION 

An improvement to the Chudnovsky model is made 
that accounts for nonhomogeneous transformation 
of material within a process zone surrounding a 
crack. 

The distribution of the extent of transformation 
was experimentally determined in these studies. 
Further improvement of the model using the vari- 
ation of the Gibbs potential should allow for pre- 
diction of the distribution without experimental de- 
termination. 

The driving force for the process-zone evolution 
is evaluated and a new kinetic equation incorporat- 
ing the driving force is proposed that leads to a mas- 
ter curve for the observed growth of the process zone 
of polycarbonate under various loading histories. 

The fundamental significance of the constants ko 
and a in eq. (20)  and their relation to intrinsic ma- 
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Figure 7 
netics. 

A master curve for the PC process zone ki- 

terial parameters as well as the applicability of the 
equation to account for temperature and various 
loading conditions are subjects for future scrutiny. 
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